
ABSTRACT: Fatty acid analysis is frequently performed in fat
and other raw materials to classify them according to their fatty
acid composition, but the need to carry out online determina-
tions has generated a growing interest in more rapid options.
This research was done to evaluate the ability of a polymer-sen-
sor based electronic nose to classify Iberian pig fat samples with
different fatty acid compositions. Significant correlations were
found between individual fatty acids and sensor responses,
proving that sensor response data were not fortuitously sorted.
Significant correlations also appeared between some sensors
and water activity, which was considered during the sample
classification. Two supervised pattern recognition techniques
were attempted to process the sensor responses: 85.5% of the
samples were correctly classified by discriminant analysis, but
the percentage increased to 97.8% using a one-hidden layer
back-propagation artificial neural network. The electronic nose
(specifically, sensor responses analyzed by a neural network)
achieved success similar to that obtained using the more usual
fatty acid analysis by gas chromatography.
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Pig fat or lard is a common ingredient in the production of a
large variety of foodstuffs. Its fatty acid composition influences
not only its fluidity but also its oxidative stability and odor de-
velopment. Furthermore, fatty acid composition of fat is cur-
rently used for classifying purposes by the Iberian pig industry
(1,2), a sector of the Spanish meat industry that usually pro-
duces dry-cured products of high value. In spite of its wide-
spread use, some characteristics of the analytical procedure
(time-consuming, cumbersome, requirement of equipment and
personnel) restrict its application online. Therefore, methods
that allow a quicker classification are in great demand.

To date, procedures for controlling quality in raw material
and processed foods by analyzing their odors (sensory and
volatile compound analyses) have usually been unfeasible. In
recent years, the appearance of the electronic nose has led to
the possibility of monitoring odors in a rapid way, although
some attention to the sensitivity of these instruments to humid-
ity must be paid, especially sensors that work at low tempera-
tures (3,4). The relationship between fatty acid composition

and the volatile compound profile generated already has been
established for dry-cured Iberian pig samples (5,6) and also has
been used to demonstrate the feasibility of the electronic nose
to distinguish oil samples that have undergone different oxida-
tive conditions (7). Therefore, electronic noses could be used
to classify fat samples with different fatty acid composition,
since their degradation by oxidative reactions yields different
volatile compounds that cause a characteristic response in gas
sensors. Up to now, electronic nose performance has mainly
been compared to odor sensory analysis or volatile compound
analysis by gas chromatography–mass spectroscopy (8), which
could be considered as directly related to odor but which can-
not be applied online. That is, there has been no comparison to
the usual techniques for quality control, which focus on char-
acteristics such as fatty acid composition, without directly con-
sidering volatile compound composition.

The objective of our research was to study the ability of an
electronic nose to distinguish samples with small differences
in fatty acid composition, because these types of samples usu-
ally involve the most difficulty.

EXPERIMENTAL PROCEDURES

Samples. Samples of subcutaneous adipose tissue were dis-
sected from 30 Iberian pigs immediately after slaughter. All
the samples were collected on the same day, and were taken
from three different anatomical locations (n = 30 × 3): on glu-
teus medius muscle (group A), on semitendinosus and semi-
membranosus muscles (group DO), and next to the coccygeal
vertebrae (group H). They were vacuum-packaged, frozen
and kept at –80°C until needed for analysis. Before the analy-
sis, the samples were minced and blended. 

Measurements with the gas sensor instrument. An Aro-
maScan A32/8S electronic nose (AromaScan plc, Crewe,
Cheshire, United Kingdom) was used, which comprises a 32-
element sensor array of conducting polymers. Samples (5 g)
were placed in 60-mL odorless glass vials, sealed, and main-
tained at 30°C for 10 min prior to resealing them with the
sampling lid. (This procedure allows us to carry out the first
heating period for a sample at the same time as the headspace
equilibration and the sensor measurement for the other sam-
ple.) Samples then were held for 5 min at 30°C to let the sam-
ple equilibrate with the headspace. A data acquisition cycle
was carried out: 30 s to equilibrate the sensor responses at
10% relative humidity air (previously filtered through char-
coal and molecular sieve); 130 s (from 30 to 160 s) for sensor
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measurement, using a filtered air flow at 10% relative humid-
ity to carry the volatile compounds from the headspace to the
sensor chamber; and 200 s to wash the sensors using vapor
generated from a 2% butanol-in-water solution. Empty glass
vials also were sampled after each cycle. Four replicates were
analyzed of each sample, and special attention was paid to use
a random sampling order.

Sensor response values were expressed as Rs × 1000/Ro,
where Rs was the sensor resistance for the sample and Ro was
the sensor resistance for filtered air (filtered through charcoal
and molecular sieve) at approximately 10% relative humid-
ity. Sensor responses were studied as normalized data, which
were averaged over a fixed time range. 

Water activity measurement. Water activity (Aw) was deter-
mined with a GBS Scientific Instruments FA-st/1 system (Ro-
mans, France). Two replicates were analyzed of each sample.

Fatty acid analysis. Fatty acid composition was deter-
mined by gas chromatography of the fatty acid methyl esters
synthesized by using methanolic hydrogen chloride, as de-
scribed by Carrapiso et al. (9). Solution (0.1 µL) was injected
into an HP 5890II gas chromatograph (Hewlett-Packard, Palo
Alto, CA) equipped with a cold on-column injector, a flame-
ionization detector, and a 30 m × 0.53 mm capillary column
coated with FFAP-TPA stationary phase (1 µm thickness).
The conditions were as follows: oven temperature 220°C
isothermal for 30 min, injector and detector temperature
230°C, flow rate of the carrier gas (nitrogen) 2.6 mL/min.
Two replicates were analyzed of each sample. 

Data analysis. Statistical analyses were performed on the
mean of all the replicates of each sample. One-way analysis of
variance and the Tukey test were used to compare means for
Aw and fatty acid values (10). A nonlinear mapping algorithm
(the Sammon map method) that preserves as much as possible
the internal data structure (11) was used to select points of
analysis in the sensor responses. Pearson correlation (10) and
factor analysis [using principal components analysis (PCA) as
the method for factor extraction] (12) were applied to evaluate
the relations among variables. Discriminant analysis (DA) by
stepwise procedure was used to select the most useful variables
for distinguishing among groups and to classify samples (12).
A standard one-hidden layer back-propagation artificial neural
network (ANN) also was used to sort the sensor responses; and
the nodes in both the hidden and the output layers had sig-
moidal transfer functions (13). The discriminant functions and
the trained ANN were not validated against a separate data set.

Statistical analyses were performed by means of the Aro-
maScan A32S version 1.21 (which included the Sammon map
method) and the SPSS version 9. The neural network analy-
sis was carried out using an evaluation tool (Neurosolution
version 1.3).

RESULTS AND DISCUSSION

Fatty acid composition and Aw. Fatty acid analysis showed
small but significant differences among the three groups of
samples (Table 1), as expected (14). Significant differences

also appeared in Aw (Table 1) between A and H (lower val-
ues) and DO (higher values), which must be considered dur-
ing sensor data analysis to avoid humidity interference or a
sample classification significantly influenced by Aw instead
of being mainly conditioned by volatile compound profile.
Even though water vapor is a characteristic volatile from
some types of samples (15), that is not the case with fats. Dif-
ferences in Aw in these samples are not related necessarily to
fatty acid profile; hence, sensors highly correlated to Aw
should be researched.

Selection of the point of analysis in sensor responses. In
order to evaluate the sensor responses, initial (up to 40 s) and
final (155 to 160 s) data were eliminated because of their in-
stability. Sensor responses were divided into three data sets,
which were analyzed using the Sammon map method. The
most useful period was clearly found at 120–155 s. Even
more discrimination of samples was achieved at 150–155 s.
The classifying power at those periods was also checked by
using DA, and the interval 150–155 was also the best. There-
fore, this period was taken as the point of analysis. 

The best results were obtained using no initial measuring
intervals, likely because of the type of sensors used, which
typically show a larger sensitivity in their response by increas-
ing the time of interaction between gas sensors and volatile
compounds (16) before the occurrence of sensor saturation.
Rocha et al. (17), also using an AromaScan A32/8S electronic
nose, reported inadequate final values owing to the saturation
of the sensors with humidity. In our study, the humidity in the
sensor array chamber also rose during the sampling process,
but the result was the opposite: the most useful values were
obtained when the humidity was higher, probably because the
humidity content of the headspace was insufficient to interfere
with the sensor response to volatile compounds.

416 A.I. CARRAPISO ET AL.

JAOCS, Vol. 78, no. 4 (2001)

TABLE 1
Fatty Acid Composition and Water Activity Values of Subcutaneous
Fat Samplesa

Fatty acid composition

Fatty
(g fatty acid/100 g total fatty acids) 

P
acids Ab DOc Hd values

14:0 1.5 ± 0.1b 1.6 ± 0.1a 1.6 ± 0.1a <0.001
16:0 22.1 ± 0.8c 22.9 ± 1.2b 24.8 ± 0.8a <0.001
17:0 0.4 ± 0.1a 0.3 ± 0.1a,b 0.3 ± 0.0b 0.021
18:0 10.1 ± 0.7b 9.1 ± 0.8c 10.9 ± 1.0a <0.001
20:0 0.2 ± 0.0a 0.2 ± 0.0b 0.2 ± 0.0c <0.001
16:1 2.3 ± 0.2c 2.8 ± 0.4b 3.0 ± 0.4a <0.001
17:1 0.4 ± 0.1a 0.4 ± 0.1a 0.3 ± 0.1b <0.001
18:1 52.2 ± 1.1b 53.0 ± 1.5a 49.1 ± 1.1c <0.001
20:1 1.8 ± 0.2a 1.6 ± 0.2b 1.2 ± 0.1c <0.001
18:2 8.7 ± 0.5a 7.8 ± 0.5b 8.1 ± 0.8b <0.001
18:3 0.4 ± 0.1b 0.4 ± 0.1b 0.5 ± 0.2a <0.001

Water activity

Aw 0.85 ± 0.06b 0.94 ± 0.04a 0.86 ± 0.07b <0.001
aData appear as mean values ± standard deviation. Means within a row fol-
lowed by different roman superscript letters are significantly different (P ≤ 0.05).
bSamples taken on gluteus medius muscle.
cSamples taken on semimembranosus and semitendinosus muscles.
dSamples taken next to the coccygeal vertebrae.



Relation among variables. PCA was used to obtain a sim-
plified view of the relations among quantitative variables (in-
dividual fatty acid values, sensor values taken at 150–155 s,
and Aw values). Figure 1 shows that most of the sensor values
are plotted in two groups, which means that most sensor data
are redundant and correlated, whereas the seven nongrouped
sensors have information related to Aw or some fatty acids.

As expected, most correlations among sensor data were
significant (Pearson correlation), confirming that much of the
information may be redundant, which is typical of sensors
made of conducting polymers (4). Furthermore, highly sig-
nificant correlations (P < 0.001) between five sensors (S9,
S13, S20, S29, and S32) and Aw were found. A considerable
influence of Aw on sample classification could be ruled out
because of the low classifying power of these sensors, insuf-
ficient to be included on the discriminant functions during the
later discriminant analysis (Table 2). In any case, these sen-
sors were not used in the later data classification carried out
with the neural network. Correlation was also found among
fatty acid profiles and sensor values. The most significant cor-
relations appeared among the Aw-uncorrelated sensors and the
fatty acid which had significant differences among groups.
Therefore, the relation between fatty acid composition and
sensor responses is clear. In fact, fatty acids are involved in
an important way in odor development by lipid oxidation,
and, as was mentioned above, the feasibility of using the elec-
tronic nose for detecting odors produced by oxidation of corn
oils has already been established (7). In our raw fat samples
these reactions were limited from slaughter until storage at
–80°C, but they could be significant during the stabilization
at 30°C prior to the sensor measurement. 

Classification of data. The classification of samples with
different fatty acid compositions was performed by using a
DA, and an ANN, given that they currently seem to be the
most useful techniques for classifying samples using sensor

data from electronic noses (16). Three variables were chosen
by DA (Table 2), with the last variable providing only a small
improvement in the model. Note that none of the sensors
highly correlated with Aw was selected, as was mentioned
above. The two discriminant functions were highly signifi-
cant (P < 0.001) and displayed a canonical correlation of
0.772 and 0.628. Therefore, 75.5% of the variance in the de-
pendent variable can be explained by these functions. Only
85.5% of the samples were correctly classified, which trans-
lates to poor classifying performance. The data from the DO
group were difficult to sort; in fact, only 73.3% of the sam-
ples from this group were correctly classified, probably be-
cause of their higher Aw. In any case, the three groups repre-
senting different fatty acid compositions were quite separate
in the space being examined (Fig. 2).

The electronic nose performance using ANN (98.9% of the
samples were correctly classified) (Table 3) was better than
that using DA (85.5%). This result is in accordance with dif-
ferent reports that have shown the usefulness of neural net-
works for the sensor data analysis, due not only to less strict
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FIG. 1. Projection of the variables onto the space defined by the two
first principal components (PC1/PC2). Variables: (��) individual fatty
acids; (�) sensor values; (��) water activity. Variables of interest (indi-
vidual fatty acids or sensor values included in discriminant functions,
and sensor values correlated to water activity) are labeled.

TABLE 2
Variable Selected By Stepwise Procedure in Discriminant Analysisa

Wilks’ lambda
Variableb Stepc valued F-valuee Significancef

S26 1 0.41 63.26 0.000
S17 2 0.27 40.14 0.000
S25 3 0.24 28.95 0.000
aVariables are entered sequentially according to the discriminatory power
they add to the model.
bVariables entered in the model.
cNumber of step where each variable was selected.
dWilks’ lambda value, i.e., the significance criterion to enter P < 0.05.
eValue associated with each variable.
fStatistical significance.

FIG. 2. Projection of the samples onto the space defined by the two dis-
criminating functions (DF1/DF2). Each point represents the mean of four
measurements from an individual sample. Sample groups: (��) group A
(samples taken on gluteus medius muscle); (�) group DO (samples taken
on semimembranosus and semitendinosus muscles); and (��) group H
(samples taken next to the coccygeal vertebrae).



requirements of the data but also to marked improvement in
classifying tasks (4). Sensor measurement–neural network
treatment achieved a similar success to that obtained using
fatty acid profiles (Table 3). Although the classifying perfor-
mance using sensor and fatty acid data was not validated
against a separate data set (the sample size was not enough),
these results suggest that suitable fat classification using the
electronic nose is possible. Because the sensor responses
occur as a result of the interaction of sensors with volatile
compounds, some consideration should be taken into account
to prevent uncontrolled lipid oxidation. Processing method
and storage conditions should be the same for all the samples,
as would be required to analyze volatile compounds.

This electronic nose provides suitable results and could be
used as a feasible alternative to the cumbersome fatty acid
analysis for the classification of samples according to their
fatty acid composition. Moreover, it could be useful for on-
line controls because it is easier and faster to use. 
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TABLE 3 
Comparison of the Classifying Performance of Conventional Fatty
Acid Analysis by Discriminant Analysis and Sensor Measurement By
an Artificial Neural Network

Samples correctly classified (%)a

Group Fatty acid composition Sensor responses

Ab 29   (96) 29   (96)
DOc 29   (96) 30 (100)
Hd 30 (100) 30 (100)
aValues in parentheses are percent correctly classified.
bSamples taken on gluteus medius muscle.
cSamples taken on semimembranosus and semitendinosus muscles.
dSamples taken next to the coccygeal vertebrae.


